Centre for Astrophysics and Supercomputing

The Centre for Astrophysics and Supercomputing is one of the premier research Astronomy centres in Australia. Research interests include galaxies, globular clusters, pulsars, stars and planets, supermassive black holes, Big Bang cosmology and scientific visualisation.

This collection also available via: iTunes U | RSS

Results
Showing 1 to 10 of 56 results

Capturing the light of the Universe (Free Astronomy Public Lectures)

Light is the key piece of the Astrophysics we make today. Thanks to the analysis of the light astronomers know where stars, galaxies are, what they are made of, how they move, and more. I will give some examples of how light is captured and analysed in big telescopes such as the Anglo-Australian Telescope (AAT) of the Australian Astronomical Observatory (AAO), from imaging to spectroscopy, summarising some of its most important scientific results. But I will also talk about how amateur astronomers and citizen scientists are now capturing the light of the Universe, as they are getting astonishing views of the night sky. Deep sky images of both professional and amateur astronomers are inspiring artists and young people in science and technology around the world

Created by: Angel Lopez-Sanchez
Year: 2018
Format: Audio
Collection: Swinburne Commons (Open)
Status: Live|Last updated:17 May 2018 3:52 PM
zero star rating average
0 comments

Cosmology: from the Big Bang to the formation of atoms (Free Astronomy Public Lectures)

The whole Universe was in a hot dense state, then nearly 14 billion years ago expansion started. Wait... is the Bang Bang true and how do we know? In this talk Associate Professor Emma Ryan-Weber from the Centre for Astrophysics and Supercomputing will describe the observational evidence for Big Bang Cosmology and how it sets the initial conditions for every atom in the Universe. The talk is especially suitable for year 11 teachers and students studying VCE Physics Unit 1, area of study 3 "What is matter and how is it formed". Presented on 10 February 2017.

Created by: Emma Ryan-Weber
Year: 2017
Format: Audio
Collection: Swinburne Commons (Open)
Status: Live|Last updated:16 March 2018 10:54 AM
zero star rating average
0 comments

Small, medium, large: what galaxy sizes reveal about their past (Free Astronomy Public Lectures)

Galaxies are the largest structures of matter in our Universe. Our own Milky Way has been studied in glorious detail. We know it has billions of stars, around most of which planets are likely to be found. There is a super massive black hole at its center where anything that gets too close will be consumed. There are intricate dust lanes that obscure the main disk of the galaxy. There is the life-force of stars, hydrogen gas. Finally, there is the mysterious dark matter that acts as a gravitational glue holding the ordinary matter together. But our galaxy is just one of many, and since their discovery, understanding how these complex objects form and evolve has been a focus of astronomers. There are many pathways to reveal more about the nature and evolution of galaxies. In this talk, Dr Rebecca Allen from the Centre for Astrophysics and Supercomputing, will share how she uses the sizes of galaxies to understand more about their growth. Presented on Friday 12 May 2017.

Created by: Rebecca Allen
Year: 2017
Format: Audio
Collection: Swinburne Commons (Open)
Status: Live|Last updated:16 March 2018 10:54 AM
zero star rating average
0 comments

The most ancient spiral galaxies seen through nature's largest telescopes (Free Astronomy Public Lectures)

One of the most prominent features of galaxies today is the manifestation of elegant spiral arms. We live in a beautiful grand-design spiral galaxy called the Milky Way. Our Solar System, including the Earth and the only life that we know, lies within the Orion spiral arm of our Milky Way galaxy. However, as we look back in time to the very early Universe, the frequency of spiral galaxies decreases dramatically. In fact, most galaxies in the distant past are messy and irregular in shape. Why is it so? When was the first appearance of spiral arms? How were they formed? In this talk, I will take us 11 billion years back in time through the distorted space surrounding nature's most massive structures. We will get a glimpse of earliest onset of spiral arms and directly witness the formation of a spiral galaxy that could later be home to billions of stars and planets like our earth. Presented on Friday 29 September 2017.

Created by: Tiantian Yuan
Year: 2017
Format: Audio
Collection: Swinburne Commons (Open)
Status: Live|Last updated:16 March 2018 10:54 AM
zero star rating average
0 comments

The rocket science in everyday life in your backyard (Free Astronomy Public Lectures)

Over the last century, our understanding of the Universe has grown by leaps and bounds whilst posing new questions and testing our very fundamental knowledge and understanding of things around us. To answer these profound questions, scientists are planning ever more ambitious projects driven by human curiosity, to explore the unknown and comprehend our place in the vast senseless space. The Australian federal government in 2016-17 provided AUD 10 billion in support of science research and experiment development while NASA and ESA combined, plans to invest USD 25+ billion in 2017. Why is it important for governments to spend substantial amounts of money in fundamental science research? What are the benefits for the average tax payer, from governments investing billions of dollars into space science? How has our everyday lives been influenced by such investments? Together we shall discuss and explore how our investments in science has improved our way of living, and what the future may hold in store for us. Pre…

Created by: Themiya Nanayakkara
Year: 2017
Format: Audio
Collection: Swinburne Commons (Open)
Status: Live|Last updated:16 March 2018 10:54 AM
zero star rating average
0 comments

The violent Universe: explosions, transient events, and gravitational waves (Free Astronomy Public Lectures)

The ancients considered the Universe unchanging, and had a special name for the planets, which they regarded as “wanderers”. Any changes in the night sky were seen as portents of doom – and a reason to fear the Gods. The advent of modern astronomy means that we no longer fear changes in the night sky, indeed some of us make our living from them! In this lecture I will tell you the story of the modern transient sky, where stars live and die in spectacular explosions and amazing instruments such as the LIGO and Virgo gravitational wave interferometers probe the darkest depths of the Universe. The discovery of gravitational waves was awarded the Nobel Prize in Physics this month and has the power to reveal a plethora of new science from the merger of black holes and other exotic stars. Presented on Friday 20 October 2017.

Created by: Igor Andreoni
Year: 2017
Format: Audio
Collection: Swinburne Commons (Open)
Status: Live|Last updated:16 March 2018 10:53 AM
zero star rating average
0 comments

ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (STEM Blitz February 2017)

Ryan-Weber leads the intergalactic medium research group at Swinburne. Her science focuses on detecting elements heavier than Helium in absorption at very high redshifts (12 billion years ago). To achieve this we use near-infrared spectroscopy towards high redshift quasars on the world's largest telescopes including Keck (Hawaii) and the VLT (Chile). She received her PhD from the University of Melbourne in 2004, spent 5 years at the University of Cambridge and commenced her position at Swinburne in 2009. Ryan-Weber is one of three Swinburne CIs for the CAASTRO-3D Centre of Excellence. Recorded on 10 February 2017.

Created by: Emma Ryan-Weber
Year: 2017
Format: Video
Collection: Swinburne Commons (Open)
Status: Live|Last updated:16 March 2018 10:53 AM
zero star rating average
0 comments

Black hole binaries - a unique love story (Free Astronomy Public Lectures)

One of the greatest scientific discoveries of all times was achieved last week: the first detection of gravitational waves, emitted by a black hole binary. This discovery follows decades of intense work, and opens a new window to the Universe. This talk, for scientists and for non-scientists, is about black hole binaries, and the dawn of gravitational wave astronomy. This talk is about the curious romance of Alice and Bob. Nobody has heard it before, but we can speculate about what happened: how they were born, how they grew, how they first met, and how they finally became one forever. The true story is actually written in space-time, has been traveling across the Universe for more than a billion years, and is reaching Earth now. This is the story of two distant black holes merging into one. You may be wondering how we can hear it: is there really a way to listen to the voice of space-time? I will endeavour to answer this question, and explain how we attempt to discover new sounds of the Universe that we have…

Created by: Pablo A. Rosado
Year: 2016
Format: Video, Audio
Collection: Swinburne Commons (Open)
Status: Live|Last updated:16 March 2018 10:24 AM
zero star rating average
0 comments

Cosmic cartography: making maps of the Universe (Free Astronomy Public Lectures)

Almost one hundred years ago, astronomer Edwin Hubble revolutionised our understanding of the Universe and our place in it when he discovered that it extends beyond the Milky Way. Since then, astronomers have identified millions of galaxies beyond our own, and developed sophisticated techniques to measure their distances and motions. In this talk, I will show how astronomers map the Universe using large surveys of galaxies, and how "cosmic maps" are an essential tool in Cosmology, allowing us to understand the physical nature and history of the Universe. Presented on 15 April 2016.

Created by: Elisabete da Cunha
Year: 2016
Format: Audio
Collection: Swinburne Commons (Open)
Status: Live|Last updated:16 March 2018 10:24 AM
zero star rating average
0 comments

Discovering the unexpected: Pulsars, fast radio bursts and aliens? (Free Astronomy Public Lectures)

Almost 50 years ago Jocelyn Bell built a new telescope with her supervisor Antony Hewish that had an unusual property: it had high time resolution. The radio sky was thought to only change on long timescales but this new telescope's ability to explore a different regime of phase space meant that it made one of the greatest discoveries in astronomy, that of pulsars. Pulsars are neutron stars, the collapsed cores of once-massive stars. They have been used to perform some of the most accurate experiments in physics, and were the motivation for the construction of the LIGO telescope that recently discovered gravitational waves. In this talk Professor Matthew Bailes will explain how whilst trying to find new pulsars astronomers stumbled across a brand new phenomenon, the Fast Radio Bursts. These millisecond-duration radio flashes appear to be coming from half way across the Universe but nobody knows what they are. Presented on 30 September 2016.

Created by: Matthew Bailes
Year: 2016
Format: Audio
Collection: Swinburne Commons (Open)
Status: Live|Last updated:16 March 2018 10:24 AM
zero star rating average
0 comments